Which Parameter Does Affect the N\textsubscript{2}O Exchange between the Air and the Sea?

Mitsuru Hayashi
Research Centre for Inland Seas, Kobe University
Kobe, Hyogo, Japan

Mitsuki Ohya
Sankyu Inc.
Tokyo, Japan

Kentaro Sakamoto
Public library of Kobe City
Kobe, Hyogo, Japan

and Eiji Yamashita
Okayama University of Science
Okayama, Japan

ABSTRACT

Water temperature decides solubility and the direction of N\textsubscript{2}O flux. When water temperature is low, solubility is high and N\textsubscript{2}O in seawater is under saturation. Water temperature also affects the volume of the flux in this situation. When water temperature is high, because solubility decreases, N\textsubscript{2}O is emitted from the sea to the air. The volume of flux is decided by N\textsubscript{2}O concentration in seawater. Water temperature is main factor for N\textsubscript{2}O exchange. Japanese coastal seas can have as both sink and source of N\textsubscript{2}O.

KEY WORDS: Nitrous Oxide; N\textsubscript{2}O; In-situ Data; Greenhouse Effect Gas; Coastal Sea; Flux; Solubility.

INTRODUCTION

Nitrous Oxide (N\textsubscript{2}O) is a greenhouse effect gas, as defined by the Kyoto Protocol. Total disappearance of N\textsubscript{2}O in the air is estimated as 38.6 Tg-N\textsubscript{2}O y-1, and only disappearance in the stratosphere is counted (IPCC, 2001). On the other hand, the total emission of N\textsubscript{2}O into the air is estimated as 55.6 Tg-N\textsubscript{2}O y-1. The difference is presumed to be increasing N\textsubscript{2}O concentration in the air. According to the IPCC report (2001), nature gives off 65 % of the N\textsubscript{2}O emissions in the world, and most common natural sources is soil. Ocean is the second most prominent nature source, and emits 17 % (= 10 % from open oceans + 7% from estuaries and coastal seas). N\textsubscript{2}O gas is generated by nitrification and de-nitrification processes in seawater and the sea bottom sediment. Ocean is source of N\textsubscript{2}O in general. Coastal sea area occupies only 3% of the whole ocean (Yanagi, 1999). But the amount of N\textsubscript{2}O emissions per area of coastal seas is 3 times that of the emissions from the whole ocean (Bange, 1996a) because of active biochemical processes.

On the other hand, it is possible that the ocean behave as a sink for N\textsubscript{2}O like for CO\textsubscript{2}. The N\textsubscript{2}O flux, \(F \) (\(\mu \)mol m-2 d-1) between the air and seawater is estimated by Eq. 1.

\[
F = 0.24k_g \Delta N\textsubscript{2}O = 0.24k_g (C_{\text{sea}} - C_{\text{sol}})
\]

\(\Delta N\textsubscript{2}O \) is the difference of \(C_{\text{sea}} \) (nmol l-1) and \(C_{\text{sol}} \) (nmol l-1). \(C_{\text{sea}} \) is the N\textsubscript{2}O concentration in seawater, and \(C_{\text{sol}} \) is the N\textsubscript{2}O solubility of seawater. The direction of N\textsubscript{2}O flux is decided by \(\Delta N\textsubscript{2}O \). \(k_g \) is the gas transfer velocity (cm h-1), and is function of the wind speed. 0.24 is the coefficient for unit exchange (Bange et al., 1996a; Bange et al., 1996b; Wilde and Helder, 1997; Bange et al., 2001). \(k_g \) accelerates N\textsubscript{2}O flux, but don't related to the direction of the flux. Solubility is given by Eq. 2 (Weiss and Price, 1980).

\[
C_{\text{sol}} = k_s X_{\text{air}}
\]

\(X_{\text{air}} \) (natm) is N\textsubscript{2}O partial pressure in the air. \(k_s \) (mol l-1 atm-1) is the solubility coefficient which is a function of water temperature and salinity. Solubility means how much N\textsubscript{2}O can dissolve into the seawater in the condition of water temperature and salinity at the time.

Therefore not only N\textsubscript{2}O concentration in the air and sea but also water temperature and salinity are related to N\textsubscript{2}O flux. In considering the role of coastal sea to the greenhouse effect by N\textsubscript{2}O, explaining parameter that dominate the N\textsubscript{2}O exchange is important. We considered the parameter which the affects N\textsubscript{2}O exchange between the air and the sea based on the in-situ data measured in Japanese coastal seas and the theoretical equations.

METHODS

Data