A Non-Linear Fracture Assessment Procedure for Pipeline Materials with a Yield Plateau

Tomasz Tkaczyk
Offshore Engineering Division
Technip
Westhill, Aberdeenshire, UK

Noel P. O’Dowd
Department of Mechanical and Aeronautical Engineering
University of Limerick
Limerick, Ireland

Kamran Nikbin
Department of Mechanical Engineering
Imperial College London
London, UK

Brett P. Howard
Offshore Engineering Division
Technip
Westhill, Aberdeenshire, UK

ABSTRACT
An accurate defect assessment procedure is needed to ensure integrity of girth welded steel pipelines while avoiding unnecessary repairs. An integral part of such a procedure is an estimation scheme for the crack driving force. In a recent paper, a modified reference stress method has been proposed by the authors for the assessment of elastic-plastic pipes with surface breaking defects. For materials with continuous yielding the method has been shown to provide accurate estimates of crack driving force. However, for materials with a yield plateau (Lüders plateau), the description of the evolution of the crack driving force is less accurate. In this work, a method for the estimation of crack driving force (phrased in terms of the J-integral) for surface breaking pipeline defects, applicable to materials with a yield plateau, is proposed. The method is validated by comparing the predictions with the results of three-dimensional finite-element analysis of a surface cracked pipe under tension and bending loading.

INTRODUCTION
The reel-lay method is a cost efficient alternative to the S-lay and J-lay methods (Kyriakides and Corona, 2007) for installation of small to medium size steel offshore pipelines (up to approx. 0.5 m in diameter). During reeling a long section of pipe (up to several kilometers in length) is spooled onto a large diameter reel, situated on a vessel while docked at a spoolbase (see Fig. 1). The pipe is installed by unreeling the pipeline once the vessel has arrived at the destination site. In addition to a faster installation process, the quality of the pipeline construction is also enhanced, compared to conventional installation techniques, by the use of on-shore welding and inspection under controlled conditions. However, reeling operations induce plastic strain in the pipeline (up to 2.3% for an 18” (457 mm) diameter pipe). For a pipe of diameter D, with a bending radius R, the maximum bending strain, ε, (assuming pure bending) is,

$$\varepsilon = \frac{D/2}{R+D/2}$$

(1)

An accurate defect assessment procedure will ensure integrity while avoiding unnecessary repairs. An integral part of such a procedure is a method to calculate the crack driving force, typically phrased in terms of the J-integral or crack tip opening displacement.