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ABSTRACT 
 
The propagation of shallow water waves is simulated using high-order 
Boussinesq equation, which approximates the flow velocity by series 
expansions. In this study, the expansion is truncated at the 3rd order 
(Boussinesq-type) involving up to the fifth derivative operators. The 
finite series are constructed with the help of the Padé approximation in 
order to ensure the accuracy of the highest degree for a given number 
of terms. Through this, the accuracy of the dispersion property in the 
wave propagation is assured up to the wave numbers of as high as   

25kh = , and at the same time, the effectiveness of the vertical 
structure of the velocity field is enhanced for kh  of up to 12. The 
numerical scheme is implemented based on the time stepping 
integration of the exact surface boundary conditions. Numerical models 
are constructed in two dimensions (thus three dimensions for velocity) 
in order to closely examine the flow characteristics such as the 
generation, propagation and absorption of shallow water waves. The 
numerical results are found to coincide quite well with the exact 
solution and also with experimental data. The wave refraction and 
shoaling due to bottom topography in coastal regions are also 
investigated.  
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INTRODUCTION 
 
Wave effects are important considerations in the analysis of coastal 
structures such as breakwaters, harbor, and moored-floaters. The design 
of these structures generally considers a number of possible wave 
conditions in order to determine the design criteria. Wave conditions 
can be generated by suitable mathematical models or numerical 
methods which must cope with various wave deformations such as 
shoaling, refraction, diffraction and reflection of waves propagating 
from deep water to shallow water.  
Boussinesq models are well known to be the most accurate method for 
describing the propagation of non-linear shallow water waves near 
coastal regions. The Boussinesq formulation is well known for its 
incorporation of dynamic properties into horizontal dimensions by 
eliminating the vertical coordinate. It significantly reduces the 

computational burden relative to three-dimensional methods, enabling 
wave simulations in a wide coastal region to be implemented. 
Boussinesq (1872) equation was derived by eliminating the vertical 
dependency and assuming 2( ) ( ) 1O Oμ ε= < , where 

0 0k hμ = , 
0 0/a hε = .  

0,ok a  and 0h  are the typical wave number, amplitude and water depth 
in this order at a far upstream reference location. Based on perturbation 
theory, Mei and LeMéhauté (1966) and Peregine (1967) modified the 
Boussinesq equation valid for waters of variable depth. Although these 
models contained the dispersive term, its range of validity is limited to 
very shallow water because its linear dispersion relationship is only a 
rough approximation of the exact one. 
In order to apply the Boussinesq equation to waves propagating in 
intermediate or deep water, the modified Boussinesq equations with 
improved dispersion characteristics are suggested. Witting (1984) 
obtained the rational polynomial expansion of the linear dispersion 
relation. Madsen et al (1992) included higher-order terms with 
adjustable coefficients into the standard Boussinesq equation for even 
and variable bottoms. The accuracy of the dispersion relation could be 
considerably enhanced by introducing the Padé(2,2) approximant with 
appropriate coefficients. Gobbi et al. (2000) derived a Boussinesq 
model accurate to 4( )O μ  in dispersion and retaining all nonlinear terms. 
They used the weighted average of the velocity potential at two distinct 
water depths to obtain highly accurate dispersion to the Padé(4,4) 
approximant. Agnon et al. (1999) presented an exact formulation of the 
boundary conditions at the free surface and the bottom combined with 
an approximate solution to the Laplace equation given in terms of 
truncated series expansions. The resulting velocity fields are expressed 
in terms of velocity components of still-water data. As a result, this 
formulation makes it possible to obtain an accurate description of 
dispersive waves with non-linear terms up to 6kh = . 
The methods mentioned above, however, do not provide an accurate 
vertical distribution of the velocity field. Madsen et al. (2002) 
suggested a new type of non-linear wave equations retaining the 
vertical velocity as an unknown. In this method, the Laplace solution is 
extended from an arbitrary z-level rather than the still-water data, 
which is quite different from the conventional Boussinesq equations. 
His fifth-order model can describe highly non-linear waves to 25kh =  
for dispersion property, with accurate velocity profiles up to 12kh = . It 
means that waves from deep to shallow water can be simulated with 
this method, but for the initial step only shallow and intermediate water 

Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference
Vancouver, BC, Canada, July 6-11, 2008 
Copyright © 2008 by The International Society of Offshore and Polar Engineers (ISOPE)
ISBN 978-1-880653-70-8 (Set); ISBN 1-880653-68-0 (Set)

820




