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ABSTRACT 
 
This study investigates wave transformation when a wave passes over 
circular cylinders. The numerical model is based on the Boussinesq 
equation developed by Nwogu (1993), expressed by velocity with 
arbitrary water depth. The numerical model utilizes the Fourth-Order 
Adams-Bashforth-Moulton Predictor-Corrector Scheme and is 
combined with a source function and absorbing boundary condition to 
enhance calculations stability and reduce the required processing time. 
The absorbing boundary condition is a sponge layer combined with a 
radiation boundary condition. Several numerical experiments are made 
to simulate wave transformations over circular cylinders. The 
interactions among incident wave, reflected wave and scattered waves 
due to cylinder are obvious in wave height distributions. 
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INTRODUCTION 
 
Recently, Boussinesq equation has become the most popular equation 
in the prediction of wave transformations. Boussinesq (1872) derived 
the original Boussinesq equations. Thereafter, numerous researchers 
improved and extended their applicability. Peregrine (1967) considered 
various water depth conditions to derive a shallow-water wave equation 
from small amplitude wave theory. He used a depth-averaged velocity 
as the dependent variable to derive the Boussinesq equation at a 
constant water depth. Witting (1984) included the free surface velocity 
as the dependent variable in a nonlinear depth-integrated momentum 
equation. Expanding velocity terms as Taylor series yields a one-
dimensional Boussinesq equation; however, the weakness of the 
equation is its limited applicability to constant-depth situations and the 
difficulty of applying it to two-dimensional cases. 
Conventional Boussinesq equations are limited to relatively shallow 
water. Hence, many studies have focused on extending them to deeper 
water. McCowan (1985, 1987) calculated nonlinear wave propagations 
in shallow water using the Boussinesq equation. The error between the 
derived phase velocity and the linear phase velocity was under 5%, and 
the relative depth of the water was extended to 0.2. Madsen et al. (1991) 

improved the Boussinesq equation to enable it to be applied to 
relatively deeper water. The improved Boussinesq equation has a better 
dispersive characteristic than the conventional Boussinesq equation. 
However, their derived equation could only be applied when the depth 
of the water was constant. Madsen and Sørensen (1992) derived a 
Boussinesq equation which was not restricted to constant depth. Their 
equations also simulated irregular waves passing over mild slope sea 
beds. Nwogu (1993) derived a Boussinesq equation with velocity at 
arbitrary depth as a dependent variable, and successfully extended the 
limits of applicability to a relative depth of 0.5. He derived the same 
dispersion relation as did in Madsen et al. (1991). Wei and Kirby (1995) 
numerically solved the equation derived by Nwogu (1993) using a 
fourth-order Adams-Bashforth-Moulton predictor-corrector scheme 
efficiently reducing the errors associated with the numerical 
calculations. Their model is the well-known WKGS model. 
Schäffer and Madsen (1995) derived a Boussinesq equation that better 
described dispersive and shoaling characteristics of waves. They 
applied [4,4] Padé approximations to linearized Stokes waves to derive 
a Boussinesq equation. The relative water depth was thus extended to 
unity. Gobbi and Kirby (1999) included fifth-order terms in derivations 
to yield a one-dimension Boussinesq equation. They considered the 
dispersive characteristic of waves’ traveling over the submerged 
breakwater. Also, their numerical results were very consistent with 
experimental findings. Gobbi et al. (2000) linearly combined two 
arbitrary water depth distributions to derive the Boussinesq equations. 
These equations are applicable up to 6≈kh . Madsen et al. (2002) 
employed finite series solutions to expand the exact solutions of the 
Laplace equation in an arbitrary water depth, and the Padé 
approximation was applied when solving these equations. The 
parameter kh is applicable up to about 40. In the vertical variation of 
velocity, the limitation of kh was extended to about 12. These equations 
greatly approve the dispersion of the Boussinesq equations. The 
equations agree well with the experiments simulating the wave 
transformations before the critical wave breaking. 
 
MATHEMATICAL FORMULATION 
 
The governing equations are shown as below, 
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