Responses of a Barge-Mounted Platform in Waves and Currents

S.Y. Hong and Y.R. Choi
Korea Research Institute of Ships and Ocean Engineering
Taejon, Korea

D.J. Kim and M.H. Kim
Texas A&M University
College Station, TX, USA

ABSTRACT

The forces on and responses of a barge mounted platform (BMP) in waves and currents are investigated using various boundary element methods. A higher-order boundary element method (HOBEM) is developed in the frequency domain using a zero-forward-speed free-surface Green function and the results are compared with an independently developed constant panel method (CPM). The accuracy and convergence rate of the two methods are systematically compared. A time-domain higher-order boundary element method (THOBEM) is also developed to estimate wave forces, hydrodynamic coefficients, wave run-up, and mean drift forces in waves and uniform currents. The zero-current case of THOBEM agrees well with the frequency-domain results. The computed results are compared with experiments. The influence of neighboring boundaries, such as quays, is also studied. The responses of a BMP in the installation site of the South Sea of Korea are presented.

INTRODUCTION

For the utilization of ocean space and development of ocean resources, a BMP (barge-mounted platforms) project has been launched in Korea and a full-scale construction is planned near the Koje Island of the South Sea in the coming years (Chung & Chung, 1996). The main purpose of the BMP project is to develop key technologies for the design and construction of a floating-barge system for various kinds of purposes, such as desalination plants, waste-treatment plants, and floating ports.

One of the most important design considerations of the proposed BMP is the ability to predict the responses and mooring-line forces of the system in a design sea condition. The prediction of wave run-up is also important to provide proper deck clearance. The wave forces, run-up, mean drift forces, and platform responses may be appreciably influenced by the presence of neighboring structures and sea currents. To assess the performance of the platform in various kinds of sea environments, three different boundary element methods have been developed and the computed results are systematically compared.

First, a higher-order boundary element method (HOBEM) is developed in the frequency domain using a zero-forward-speed free-surface Green function and the results are compared with an independently developed constant panel method (CPM). The accuracy and convergence rate of the two methods are systematically compared. It is seen that the convergence of CPM is much slower than that of HOBEM in the computation of drift forces, as was also pointed out by Liu et al. (1993). A time-domain higher-order boundary element method (THOBEM) is also developed (Kim & Kim, 1997) to estimate wave forces, hydrodynamic coefficients, wave run-up, and mean drift forces in waves and uniform currents. The zero-current case of THOBEM agrees well with the frequency-domain results. Using THOBEM, the wave drift damping can be calculated by numerically differentiating the mean drift-force results for different current velocities.

To further verify the numerically predicted results, a series of experiments were conducted in the KRISO towing tank with a 1:15 scale model. The results for uniform coplanar or adverse currents were obtained by towing the model at various speeds. The experimental results in general agree well with the computed results. The increase (or decrease) of mean drift forces in coplanar (or adverse) currents can clearly be observed in both computations and experiments.

EXPERIMENT

A series of experiments were conducted in the KRISO towing tank (200m×16m) with a 1:15-scale BMP model to verify the results of numerical calculations. The particulars of the model are given in Table 1. The water depth for this experiment was 7m. Tests were performed in both regular and irregular wave conditions. The motions were measured by 7 strap-down accelerometers (Hong et al., 1992). The drift forces were measured by 4 tension-meters. They were attached to the model through 4 parallel soft springs. The resulting surge spring constant was 106.1(N/m) in model scale. Wave drift forces were estimated by extracting current forces from the measured total mean forces in waves with forward speed.