Modelling Heat Buildup in Large Polyester Ropes

M.S. Overington
Tension Technology International Ltd., Eastbourne, East Sussex, UK

C.M. Leech
Tension Technology International Ltd., Mossley, Congleton, Cheshire, UK

ABSTRACT

The use of synthetic fibre ropes in offshore rig and platform mooring is becoming increasingly likely. A leading candidate fibre is polyester since it has an excellent blend of properties. Like other fibre ropes, polyester ropes have low weight compared to steel and their consequent flat catenary restricts platform offset. Polyester ropes have relatively low modulus, so minimising fatigue loadings produced by first order wave motions. The inherent tension-tension fatigue life of polyester ropes is good. Polyester is also a good choice in terms of cost. The subject of this paper is the possible heat buildup in the large diameter ropes that will be required to compensate for polyester’s relatively low inherent strength.

NOMENCLATURE

c : specific heat capacity (J/kg°C)
E : Young’s Modulus (MPa)
k : radial conductivity (W/m°C)
Q : internally generated rate of heat generation (W/m³)
q : internally generated rate of heat generation (W/m³)
R : rope radius (m)
r : radial position within rope cross-section (m)
T : temperature (°C)
T₀ : temperature (°C) of surrounding medium, ambient temperature
t : time (s)
α : thermal diffusivity (k/ρc, m²/s)
Ψ : hysteresis loss factor
Θ : angular position within rope cross-section
ρ : material density (kg/m³)
σₐ : stress amplitude in a given cycle (MPa)
σₘ : mean stress in a given cycle (MPa)
τ : cycle time (s)

INTRODUCTION

The properties of polyester, like those of most polymeric materials, are temperature dependent. For the use of polyester in large diameter ropes, the changes in break load and break elongation with temperature are important properties. Fig. 1 depicts the general changes to polyester’s load-elongation properties with increasing temperature.

Earlier papers have been presented on theoretical and computational modelling of (1) the quasi-static tension and torque properties of ropes and splices (Leech, Hearle, Overington and Banfield, 1993) and (2) the long-term fatigue performance of these structures (Hearle, Parsey, Overington and Banfield, 1993), including the three important fatigue mechanisms of creep, hysteresis heating and internal abrasion. A paper has also been presented on an

Received March 4, 1996: revised manuscript received by the editors September 12, 1996. The original version (prior to the final revised manuscript) was presented at the Sixth International Offshore and Polar Engineering Conference (ISOPE-96), Los Angeles, USA, May 26-31, 1996.

KEY WORDS: Ropes, heating, modelling, polyester, mooring.