Effects of Vibration Absorbers on the Longitudinal Vibration of a Pipe String in the Deep Sea — Part 1: In Case of Mining Cobalt Crust

K. Aso,* K. Kan, H. Doki and K. Iwato
Department of Mechanical Engineering, Mining College, Akita University, Akita, Japan

ABSTRACT

In order to reduce the longitudinal vibration of the pipe string for mining the cobalt crust at the bottom of the deep sea, a vibration absorber, which was composed of a mass, springs and dampers, was attached to the pump module as well as the buffer. Then, the effect of the absorber on the vibration was analyzed theoretically. The results indicate that the above-mentioned absorber attached to the buffer can reduce the resonance amplitudes of the buffer and pump module to almost 40% values and that larger mass of the absorber reduces those amplitudes more within the range where the mass ratio of the absorber to the buffer is small, although the effective range of the absorber is more limited. There are the optimum values for the spring constant of the absorber and the above-mentioned mass ratio to reduce the vibration of the pipe string. Furthermore, the absorber attached to the buffer causes much greater effect on the vibration of the pipe string than that attached to the pump module.

NOMENCLATURE

A : cross-sectional area of pipe string
\( \hat{A} \) : amplitude of longitudinal vibration of buffer, pump module or vibration absorber
a : amplitude of forced displacement at top of pipe string
C_d : drag coefficient for buffer, pump module or vibration absorber
\( C_1 (i=3,4) \) : \( c_1 / \sqrt{E A m} \); nondimensional damping coefficient for vibration absorber
C_m : added-mass coefficient for buffer, pump module or vibration absorber
c : equivalent linear damping coefficient
\( c_i (i=1-4) \) : equivalent damping coefficient for buffer, pump module or vibration absorber
c_o : coefficient of structural damping in pipe string
D : outer diameter of buffer or pump module
\( D_i (i=0-2) \) : \( c_i / \sqrt{E A m} \); nondimensional damping coefficient for pipe string, pump module or buffer
E : Young’s modulus of pipe string
F(t) : fluid force due to ambient water
f : excitation frequency (frequency of forced displacement)
\( G_i (i=3,4) \) : \( g_i / \sqrt{E A m} \); nondimensional damping coefficient of absorber’s damper
\( g_i (i=3,4) \) : damping coefficient of absorber’s damper
\( K_i (i=3,4) \) : \( k_i L/EA \); nondimensional spring constant of absorber’s spring
\( k_i (i=3,4) \) : spring constant of absorber’s spring
L : total length of pipe string
\( l_m \) : length of buffer or pump module
\( l_1 \) : vertical distance from sea surface to pump module
\( l_2 \) : vertical distance from sea surface to buffer
\( \tilde{I}_1 \) : interval between sea surface and pump module
\( \tilde{I}_2 \) : interval between pump module and buffer
\( M_i (i=1-4) \) : \( m_i/m_0 L \); nondimensional mass
\( m_i (i=1-4) \) : \( \bar{m}_i + \bar{m}_i \); total mass of pump module, buffer or absorber
\( m_1 (i=1-4) \) : mass of pump module, buffer or absorber
\( m_2 (i=1-4) \) : added mass of pump module, buffer or absorber
\( m_a \) : mass of water displaced by pump module, buffer or absorber
\( m_p \) : mass per unit length of pipe string
\( R_A \) : amplitude ratio of buffer with absorber to that without absorber
\( R_M \) : mass ratio of absorber to buffer
\( S \) : cross-sectional area of pump module, buffer or absorber
t : time
\( U_o \) : \( u_o / L \); nondimensional forced displacement
\( U_v \) : \( u / L \)
\( u \) : longitudinal displacement of pipe string
\( u_B \) : amplitude of buffer
\( u_{BB} \) : resonance amplitude of buffer
\( u_m \) : longitudinal displacement of pump module, buffer or absorber
\( u_p \) : amplitude of pump module
\( u_{PP} \) : resonance amplitude of pump module
\( u_o (t) \) : forced displacement applied at top of pipe string
\( u_v \) : \( u - u_o \)
\( W_b \) : sum of submerged weights of pump module, buffer and absorber equipped below the position considered along pipe string
\( w_o \) : submerged weight per unit length of pipe string including inner fluid
\( X_i (i=3,4) \) : \( x_i / L \)
x : vertical distance from sea surface
\( y \) : \( a/L \); nondimensional amplitude of forced displacement
\( \xi \) : \( x / L \); nondimensional distance from sea surface
\( \xi_i (i=1,2) \) : \( l_i / L \)
\( \rho \) : density of ambient water
\( \sigma \) : stress induced in pipe string
\( \sigma_M \) : maximum axial stress induced at top of pipe string in first resonance

*ISOPE Charter Member.